前言
之所以写这个是因为前段时间自己的项目出现过这样的一个问题:
1 | Caused by: akka.pattern.AskTimeoutException: |
跟着这问题在 Flink 的 Issue 列表里看到了一个类似的问题:https://issues.apache.org/jira/browse/FLINK-9056
,看下面的评论差不多就是 TaskManager 的 slot 数量不足的原因,导致 job 提交失败。在 Flink 1.63 中已经修复了变成抛出异常了。
竟然知道了是因为 slot 不足的原因了,那么我们就要先了解下 slot 是什么东东呢?不过文章这里先介绍下 parallelism。
什么是 parallelism?
如翻译这样,parallelism 是并行的意思,在 Flink 里面代表每个任务的并行度,适当的提高并行度可以大大提高 job 的执行效率,比如你的 job 消费 kafka 数据过慢,适当调大可能就消费正常了。
那么在 Flink 中怎么设置并行度呢?
如何设置 parallelism?
如上图,在 flink 配置文件中可以查看到默认并行度是 1,
1 | cat flink-conf.yaml | grep parallelism |
所以你如果在你的 flink job 里面不设置任何的 parallelism 的话,那么他也会有一个默认的 parallelism = 1。那也意味着你可以修改这个配置文件的默认并行度。
如果你是用命令行启动你的 Flink job,那么你也可以这样设置并行度(使用 -p 并行度):
1 | ./bin/flink run -p 10 ../word-count.jar |
你也可以通过这样来设置你整个程序的并行度:
1 | StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); |
注意:这样设置的并行度是你整个程序的并行度,那么后面如果你的每个算子不单独设置并行度覆盖的话,那么后面每个算子的并行度就都是这里设置的并行度的值了。
如何给每个算子单独设置并行度呢?
1 | data.keyBy(new xxxKey()) |
如上,就是在每个算子后面单独的设置并行度,这样的话,就算你前面设置了 env.setParallelism(10) 也是会被覆盖的。
这也说明优先级是:算子设置并行度 > env 设置并行度 > 配置文件默认并行度
并行度讲到这里应该都懂了,下面 zhisheng 就继续跟你讲讲 什么是 slot?
什么是 slot?
其实什么是 slot 这个问题之前在第一篇文章 《从0到1学习Flink》—— Apache Flink 介绍 中就介绍过了,这里再讲细一点。
图中 Task Manager 是从 Job Manager 处接收需要部署的 Task,任务的并行性由每个 Task Manager 上可用的 slot 决定。每个任务代表分配给任务槽的一组资源,slot 在 Flink 里面可以认为是资源组,Flink 将每个任务分成子任务并且将这些子任务分配到 slot 来并行执行程序。
例如,如果 Task Manager 有四个 slot,那么它将为每个 slot 分配 25% 的内存。 可以在一个 slot 中运行一个或多个线程。 同一 slot 中的线程共享相同的 JVM。 同一 JVM 中的任务共享 TCP 连接和心跳消息。Task Manager 的一个 Slot 代表一个可用线程,该线程具有固定的内存,注意 Slot 只对内存隔离,没有对 CPU 隔离。默认情况下,Flink 允许子任务共享 Slot,即使它们是不同 task 的 subtask,只要它们来自相同的 job。这种共享可以有更好的资源利用率。
文字说的比较干,zhisheng 这里我就拿下面的图片来讲解:
上面图片中有两个 Task Manager,每个 Task Manager 有三个 slot,这样我们的算子最大并行度那么就可以达到 6 个,在同一个 slot 里面可以执行 1 至多个子任务。
那么再看上面的图片,source/map/keyby/window/apply 最大可以有 6 个并行度,sink 只用了 1 个并行。
每个 Flink TaskManager 在集群中提供 slot。 slot 的数量通常与每个 TaskManager 的可用 CPU 内核数成比例。一般情况下你的 slot 数是你每个 TaskManager 的 cpu 的核数。
但是 flink 配置文件中设置的 task manager 默认的 slot 是 1。
slot 和 parallelism
下面给出官方的图片来更加深刻的理解下 slot:
1、slot 是指 taskmanager 的并发执行能力
taskmanager.numberOfTaskSlots:3
每一个 taskmanager 中的分配 3 个 TaskSlot, 3 个 taskmanager 一共有 9 个 TaskSlot。
2、parallelism 是指 taskmanager 实际使用的并发能力
parallelism.default:1
运行程序默认的并行度为 1,9 个 TaskSlot 只用了 1 个,有 8 个空闲。设置合适的并行度才能提高效率。
3、parallelism 是可配置、可指定的
上图中 example2 每个算子设置的并行度是 2, example3 每个算子设置的并行度是 9。
example4 除了 sink 是设置的并行度为 1,其他算子设置的并行度都是 9。
好了,既然并行度和 slot zhisheng 都带大家过了一遍了,那么再来看文章开头的问题:slot 资源不够。
问题原因
现在这个问题的答案其实就已经很明显了,就是我们设置的并行度 parallelism 超过了 Task Manager 能提供的最大 slot 数量,所以才会报这个错误。
再来拿我的代码来看吧,当时我就是只设置了整个项目的并行度:
1 | env.setParallelism(15); |
为什么要设置 15 呢,因为我项目消费的 Kafka topic 有 15 个 parttion,就想着让一个并行去消费一个 parttion,没曾想到 Flink 资源的不够,稍微降低下 并行度为 10 后就没出现这个错误了。
总结
本文由自己项目生产环境的一个问题来讲解了自己对 Flink parallelism 和 slot 的理解,并告诉大家如何去设置这两个参数,最后也指出了问题的原因所在。
关注我
转载请务必注明原创地址为:http://www.54tianzhisheng.cn/2019/01/14/Flink-parallelism-slot/ , 未经允许禁止转载。
微信公众号:zhisheng
另外我自己整理了些 Flink 的学习资料,目前已经全部放到微信公众号(zhisheng)了,你可以回复关键字:Flink 即可无条件获取到。另外也可以加我微信 你可以加我的微信:yuanblog_tzs,探讨技术!
更多私密资料请加入知识星球!
专栏介绍
首发地址:http://www.54tianzhisheng.cn/2019/11/15/flink-in-action/
专栏地址:https://gitbook.cn/gitchat/column/5dad4a20669f843a1a37cb4f
Github 代码仓库
https://github.com/zhisheng17/flink-learning/
以后这个项目的所有代码都将放在这个仓库里,包含了自己学习 flink 的一些 demo 和博客
博客
1、Flink 从0到1学习 —— Apache Flink 介绍
2、Flink 从0到1学习 —— Mac 上搭建 Flink 1.6.0 环境并构建运行简单程序入门
3、Flink 从0到1学习 —— Flink 配置文件详解
4、Flink 从0到1学习 —— Data Source 介绍
5、Flink 从0到1学习 —— 如何自定义 Data Source ?
6、Flink 从0到1学习 —— Data Sink 介绍
7、Flink 从0到1学习 —— 如何自定义 Data Sink ?
8、Flink 从0到1学习 —— Flink Data transformation(转换)
9、Flink 从0到1学习 —— 介绍 Flink 中的 Stream Windows
10、Flink 从0到1学习 —— Flink 中的几种 Time 详解
11、Flink 从0到1学习 —— Flink 读取 Kafka 数据写入到 ElasticSearch
12、Flink 从0到1学习 —— Flink 项目如何运行?
13、Flink 从0到1学习 —— Flink 读取 Kafka 数据写入到 Kafka
14、Flink 从0到1学习 —— Flink JobManager 高可用性配置
15、Flink 从0到1学习 —— Flink parallelism 和 Slot 介绍
16、Flink 从0到1学习 —— Flink 读取 Kafka 数据批量写入到 MySQL
17、Flink 从0到1学习 —— Flink 读取 Kafka 数据写入到 RabbitMQ
18、Flink 从0到1学习 —— Flink 读取 Kafka 数据写入到 HBase
19、Flink 从0到1学习 —— Flink 读取 Kafka 数据写入到 HDFS
20、Flink 从0到1学习 —— Flink 读取 Kafka 数据写入到 Redis
21、Flink 从0到1学习 —— Flink 读取 Kafka 数据写入到 Cassandra
22、Flink 从0到1学习 —— Flink 读取 Kafka 数据写入到 Flume
23、Flink 从0到1学习 —— Flink 读取 Kafka 数据写入到 InfluxDB
24、Flink 从0到1学习 —— Flink 读取 Kafka 数据写入到 RocketMQ
25、Flink 从0到1学习 —— 你上传的 jar 包藏到哪里去了
26、Flink 从0到1学习 —— 你的 Flink job 日志跑到哪里去了
28、Flink 从0到1学习 —— Flink 中如何管理配置?
29、Flink 从0到1学习—— Flink 不可以连续 Split(分流)?
30、Flink 从0到1学习—— 分享四本 Flink 国外的书和二十多篇 Paper 论文
32、为什么说流处理即未来?
33、OPPO 数据中台之基石:基于 Flink SQL 构建实时数据仓库
36、Apache Flink 结合 Kafka 构建端到端的 Exactly-Once 处理
38、如何基于Flink+TensorFlow打造实时智能异常检测平台?只看这一篇就够了
40、Flink 全网最全资源(视频、博客、PPT、入门、实战、源码解析、问答等持续更新)
42、Flink 从0到1学习 —— 如何使用 Side Output 来分流?
源码解析
4、Flink 源码解析 —— standalone session 模式启动流程
5、Flink 源码解析 —— Standalone Session Cluster 启动流程深度分析之 Job Manager 启动
6、Flink 源码解析 —— Standalone Session Cluster 启动流程深度分析之 Task Manager 启动
7、Flink 源码解析 —— 分析 Batch WordCount 程序的执行过程
8、Flink 源码解析 —— 分析 Streaming WordCount 程序的执行过程
9、Flink 源码解析 —— 如何获取 JobGraph?
10、Flink 源码解析 —— 如何获取 StreamGraph?
11、Flink 源码解析 —— Flink JobManager 有什么作用?
12、Flink 源码解析 —— Flink TaskManager 有什么作用?
13、Flink 源码解析 —— JobManager 处理 SubmitJob 的过程
14、Flink 源码解析 —— TaskManager 处理 SubmitJob 的过程
15、Flink 源码解析 —— 深度解析 Flink Checkpoint 机制
16、Flink 源码解析 —— 深度解析 Flink 序列化机制
17、Flink 源码解析 —— 深度解析 Flink 是如何管理好内存的?
18、Flink Metrics 源码解析 —— Flink-metrics-core
19、Flink Metrics 源码解析 —— Flink-metrics-datadog
20、Flink Metrics 源码解析 —— Flink-metrics-dropwizard
21、Flink Metrics 源码解析 —— Flink-metrics-graphite
22、Flink Metrics 源码解析 —— Flink-metrics-influxdb
23、Flink Metrics 源码解析 —— Flink-metrics-jmx
24、Flink Metrics 源码解析 —— Flink-metrics-slf4j
25、Flink Metrics 源码解析 —— Flink-metrics-statsd
26、Flink Metrics 源码解析 —— Flink-metrics-prometheus