11.4 如何利用广播变量动态更新告警规则?
一个在生产环境运行的流作业有时候会想变更一些作业的配置或者数据流的配置,然后作业可以读取并使用新的配置,而不是通过修改配置然后重启作业来读取配置,毕竟重启一个有状态的流作业代价挺大,本节将带你熟悉 Broadcast,并通过一个案例来教会你如何去动态的更新作业的配置。
本章主要是 Flink 实战,介绍了一些常见的需求,比如实时统计网站页面的 PV/UV、宕机告警、动态更新配置、应用 Error 日志实时告警等,然后分别去分析这些需求的实现方式,明白该使用 Flink 中的哪些知识点才能够很好的完成这种需求,并提供完整的案例代码供大家参考。在实现完成这些需求之后,笔者还将会更深一步的去讲解下这些知识点背后的实现方式,希望可以加深你对这些知识点的印象,以便后面你可以灵活的处理类似的需求。
大数据开发最常统计的需求可能就是 PV、UV。PV 全拼 PageView,即页面访问量,用户每次对网站的访问均被记录,按照访问量进行累计,假如用户对同一页面访问了 5 次,那该页面的 PV 就应该加 5。UV 全拼为 UniqueVisitor,即独立访问用户数,访问该页面的一台电脑客户端为一个访客,假如用户对同一页面访问了 5 次,那么该页面的 UV 只应该加 1,因为 UV 计算的是去重后的用户数而不是访问次数。当然如果是按天统计,那么当天 0 点到 24 点相同的客户端只被计算一次,如果过了今天 24 点,第二天该用户又访问了该页面,那么第二天该页面的 UV 应该加 1。 概念明白了那如何使用 Flink 来统计网站各页面的 PV 和 UV 呢?通过本节来详细描述。
在使用 Flink 中不知道你有没有觉得配置的管理很不方便,比如像算子的并行度配置、Kafka 数据源的配置(broker 地址、topic 名、group.id)、Checkpoint 是否开启、状态后端存储路径、数据库地址、用户名和密码等,反正各种各样的配置都杂乱在一起,当然你可能说我就在代码里面写死不就好了,但是你有没有想过你的作业是否可以不修改任何配置就直接在各种环境(开发、测试、预发、生产)运行呢?可能每个环境的这些配置对应的值都是不一样的,如果你是直接在代码里面写死的配置,那这下子就比较痛苦了,每次换个环境去运行测试你的作业,你都要重新去修改代码中的配置,然后编译打包,提交运行,这样你就要花费很多时间在这些重复的劳动力上了。有没有什么办法可以解决这种问题呢?
本章将介绍两个最佳实践,第一个是如何合理的配置重启策略,笔者通过自己的亲身经历来讲述配置重启策略的重要性,接着介绍了 Flink 中的重启策略和恢复策略的发展实现过程;第二个是如何去管理 Flink 作业的配置。两个实践大家可以参考,不一定要照搬运用在自己的公司,同时也希望你可以思考下自己是否有啥最佳实践可以分享。
从使用 Flink 到至今,遇到的 Flink 有很多,解决的问题更多(含帮助微信好友解决问题),所以对于 Flink 可能遇到的问题及解决办法都比较清楚,那么在这章就给大家讲解下几个 Flink 中比较常遇到的问题的解决办法。
在 9.2 节中讲解了 Flink Job 中的执行计划,并详细分析了 Flink 中的 operator chain 在一起的各种条件,在 9.3 节中也通过真实生产环境的案例来分享并行度与 Slot 的概念与关系。相信大家也都有一定的理解,但是有时候生产环境如果 Job 突然消费不及时了,或者 Job 就根本不在消费数据了,那么该怎么办?首先得看下相关的监控查看 Job 是否在正常运行,是否出现反压的情况,是否这会生产数据量过大然而并行度却是根据之前数据量设置的,种种原因都需要一个个排查一下,然后找到根因才能够对应的去解决。这节来讲解下遇到这种问题后如何合理配置并行度呢?
通过第八章的监控图表信息,我们可以发现问题,在发现问题后,需要去分析为什么会发生这些问题以及我们该如何去解决这些问题。本章将会介绍很多 Flink 生产环境遇到的问题,比如作业出现反压、作业并行度配置不合理、作业数据倾斜等,除了引出这种常见问题之外,笔者还将和你一起去分析这种问题造成的原因以及如何去优化作业。比如合理的配置并行度、让作业算子尽可能的 chain 在一起已达到最优等。希望通过本章的内容,你可以将这些解决方法运用在你的公司,帮助公司解决类似的问题。
反压(BackPressure)机制被广泛应用到实时流处理系统中,流处理系统需要能优雅地处理反压问题。反压通常产生于这样的场景:短时间的负载高峰导致系统接收数据的速率远高于它处理数据的速率。许多日常问题都会导致反压,例如,垃圾回收停顿可能会导致流入的数据快速堆积,或遇到大促、秒杀活动导致流量陡增。反压如果不能得到正确的处理,可能会导致资源耗尽甚至系统崩溃。反压机制是指系统能够自己检测到被阻塞的 Operator,然后自适应地降低源头或上游数据的发送速率,从而维持整个系统的稳定。Flink 任务一般运行在多个节点上,数据从上游算子发送到下游算子需要网络传输,若系统在反压时想要降低数据源头或上游算子数据的发送速率,那么肯定也需要网络传输。所以下面先来了解一下 Flink 的网络流控(Flink 对网络数据流量的控制)机制。
随着人工智能的火热,机器学习这门技术也变得异常重要,Flink 作为一个数据处理的引擎,虽然目前在该方面还较弱,但是在 Flink Forward Asia 2019 北京站后,阿里开源了 Alink 平台的核心代码,并上传了一系列的算法库,该项目是基于 Flink 的通用算法平台,开发者和数据分析师可以利用 Alink 提供的一系列算法来构建软件功能,例如统计分析、机器学习、实时预测、个性化推荐和异常检测。相信未来 Flink 的机器学习库将会应用到更多的场景去,本节将带你了解一下 Flink 中的机器学习库。